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We introduce a model of proteins in which all of the key atoms in the protein backbone are accounted for,
thus extending the freely rotating chain model. We use average bond lengths and average angles from the
Protein Data Bank as input parameters, leaving the number of residues as a single variable. The model is used
to study the stretching of proteins in the entropic regime. The results of our Monte Carlo simulations are found
to agree well with experimental data, suggesting that the force extension plot is universal and does not depend
on the side chains or primary structure of the proteins.
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I. INTRODUCTION

Accurate modeling of protein structure and dynamics is
an immense challenge in the biological sciences, and has
elicited intense interest among physicists. Many models have
been developed, from first-principles studies to coarse-
grained phenomenological theories. A major issue is the
tradeoff between inclusion of microscopic details, and com-
putational tractability and efficiency. It is hoped that the lat-
ter can be improved by removing select microscopic details
which do not affect the accuracy of the results.

In this work we introduce a model of the protein back-
bone and apply it to the problem of protein stretching, for
which many experimental results are available. This allows
us to model the backbone of proteins accurately without pay-
ing attention to effective interactions or force fields.

A. Experiments

We know the elastic property of single molecules by
atomic force microscopy �AFM� and optical tweezers �1–5�.
One of the most studied proteins by these experimental
methods is titin, which plays an important role in the elastic-
ity of muscles �6�. The interesting segment of titin is the I
band, which is made of similar modules �also called repeats
or domains� with an immunoglobulinlike �Ig� structure �6,7�.
A single-folded module can resist against pulling below a
threshold. If the force exceeds the threshold, the domain will
unfold. The unfolded domain will refold into its native state
if the force is removed �1�.

If we pull a chain of folded Ig domains slowly, the nec-
essary force to keep the protein extended will increase until
one of the modules unfolds. This is called an unfolding
event, and after that we can keep the protein extended with a
much weaker force. As we increase the extension, the mod-
ules unfold one by one until we get a fully extended chain. If
we plot force versus extention during the stretching, we will
see a sawtooth pattern �Fig. 5 below� �1�. The stretching of
titin also has been studied by different theoretical methods
like molecular dynamic simulation �8,9�, lattice models �10�,
and the thick chain model �11�.

B. Models

Many theoretical models have been developed to study
macromolecules and proteins. Among them, the freely
jointed chain �FJC�, freely rotating chain �FRC�, and worm-
like chain �WLC� are the most famous �12–14�. They are
used intensively to model the backbone of proteins by con-
sidering the protein as a chain of only C� atoms, and usually
using an effective interaction among C� atoms to recover the
neglected details. We argue here that these models are not
accurate enough to model the protein backbone, and they
usually have at least one free parameter in addition to the
chain length N �for example, the persistence length� that
should be calculated by fitting of theories to experiments.
Instead of using such a parameter, we can simply use the
well known geometric details of peptides.

The wormlike chain is used to study the elasticity of mac-
romolecules �14�. It is simple and works fine whenever we
can apply continuum approximation. It is good especially for
very large and stiff macromolecules like DNA �15,16�,
whereas it becomes physically unjustifiable when applied to
more coarse-grained and more flexible chains like proteins.
For instance, in stretching of titin’s Ig domain, the persis-
tence length of the related WLC is �0.4. Although this value
is about the size of a single peptide unit �1�, the WLC is
frequently used in the literature to fit and explain experimen-
tal data because a better alternative was absent.

The freely jointed chain is a chain of monomers with
fixed bond length �12�. In this model, bond angles can have
any arbitrary value, which is not the case in real proteins
�17�. However, the freely jointed chain has an advantage
over more detailed models as it has an exact solution in the
case of stretching.

The freely rotating chain has one more constraint than the
FJC. The angles are rigid and do not change �13�. The freely
rotating chain behaves more like real proteins compared to
the FJC. This model has been used to study different aspect
of proteins and polymers including our problem of interest
�18�. However, it does not cover all the features of bond
angles because the angle between C�-C� bonds is not com-
pletely rigid in real proteins �Table II below� �17�.

In our model, we consider carbon and nitrogen atoms on
the backbone �C�, C, and N� and we follow the Ramachan-
dran picture. This can be considered as a fine-grained version*Electronic address: allaei@sissa.it
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of a FRC or as a coarse-grained version of a four-bead
model. Our model is the simplest model that includes all the
geometric properties of the backbone of proteins, and it does
not need any fitting parameters.

In this work we are interested only in the geometric de-
tails rather than the effective interactions so we can keep the
model simple and clear; therefore, we study only the me-
chanical properties of proteins in the entropic regime and
compare the results with experiments.

II. MODEL AND SIMULATION

We use the freely rotating chain model with a small varia-
tion: some bonds cannot be pivots. If we show the chain as a
binary sequence of 0 and 1 in which 1 represents a bond that
can be a pivot for rotations and 0 is a bond that cannot be a
base for rotations, then our chain will be presented as

�101�n �1�

where �¯�n means n repeats of the argument. This is equiva-
lent to considering C and N atoms in addition to C� atoms
and using a Ramachandran picture so that the chain only
rotates around C�-C and C�-N bonds �17� �Fig. 1�. Since the
chain does not rotate around C - N bonds, we know the
structure by only the pair of angles �� ,�� for each C� junc-
tion. These angles are known as Ramachandran angles �17�.

This is the simplest model that covers Ramachandran
angles which has more details than FRC, and it is simpler
than the four-bead model �19–21�.

To set distances and angles in our simulation, we analyzed
the Protein Data Bank and calculated the averages of desired

quantities over all polypeptide chains in the database �72 212
peptide units�. The results are shown in Fig. 2 and more
details are in Tables I and II.

The largest rigid distance over the backbone of proteins is
the one between two sequential C� atoms; therefore, a good
approximation is to consider a chain of C� atoms with fixed
bond length. On the other hand, it is not as good to assume
that proteins act under the freely rotating chain model, be-
cause the average of the angle between C�-C� bonds has a
relatively large standard deviation and it is not completely
rigid �Table II�.

III. RESULTS

We performed equilibrium Monte Carlo simulations and
we used the standard METROPOLIS algorithm �22� with PIVOT

move �23� and a simple Hamiltonian of the form H= f� ·r�,

where f� is the pulling force and r� is the position of the end of
the chain while the other end is fixed at the origin. In the
experiments, proteins are pulled slowly so we could use
equilibrium Monte Carlo. We used the original random num-
ber generator of the GNU C/C++ compiler to perform the
simulation.

We started from a force of zero and an extended structure.
We performed the simulation until it reaches equilibrium,
then we increased the force gradually. At each step we let the
system reach equilibrium, then we measured the average ex-
tension along the direction of the force. This process is
equivalent to the AFM experiments with a soft cantilever
�24�, so we can use the experimental data of Ref. �1�.

We continued the process until we got a fully extended
chain ��32 nm for 89 residues�. We repeated it for chains

TABLE I. Atomic distances of the main atoms in peptides. In-
dices show the order of atoms from left to right in Fig. 2.

Atom-atom Distance �nm� �

C�1C�2 3.82 0.05

C�1N1 2.43 0.05

C�1O1 2.40 0.02

C1C�2 1.53 0.01

C�1C1 1.53 0.01

C1N1 1.33 0.04

N1C�2 1.47 0.01

N1C1 2.47 0.04

C1C2 3.2 0.2

TABLE II. Angles in peptide units. The vectors are normalized
and the indices show the order of atoms from left to right in Fig. 1.
We see that the FRC is not valid because the standard deviation of
�C�1C�2� · �C�2C�3� is too large compared to its average.

A� ·B� Dot product � Angle �deg.�

�C�1C�2� · �C�2C�3� 0.19 0.25 78.9

�N1C�2� · �C2C�2� 0.349 0.032 69.60

FIG. 1. �Color online� A three-bead rotating chain. The rotations
are done around C�-C and C�-N �bold black lines�. We do not
permit any rotation around C-N bonds �thin gray �red� lines that
connect smaller circles�.

FIG. 2. Peptide units and their average dimensions �nanometer�
and average angles, from the Protein Data Bank.
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with different numbers of residues. We found that the exten-
sion is proportional to the number of residues, independent
of the force. In Fig. 3 one can see that all the extension-force
curves collapse very well when their extensions have been
divided by the number of residues �N�. Because of this uni-
versality, it is useful to find a suitable fitting function to
represent results of simulation and reproduce them for later
use. The logistic dose response

x =
aN

1 + �fc/f�� �2�

is a good candidate. Although it is simple and has only three
parameters, it includes all the important features of the
curves: a parameter to control the transition height �aN�, an-
other one to control the transition center �fc�, and one more
to control the transition sharpness ���. In Eq. �2� the vari-
ables x , f , and N are extension, force, and number of resi-
dues, respectively. The share of each peptide unit in total
length is a=0.3640 nm and fc=12.46 pN shows the critical

force that separates the swollen and the extended phases. The
last parameter is the fitting exponent �=1.021 that controls
the transition sharpness. If we want to fit the function to an
experiment, we have to consider also the possible offset from
zero.

The function �2� holds for the stretching of a chain with-
out self-interaction, but we can use it to fit the sawtooth
pattern as well. To do this, we consider that the multidomain
chain can have both the unfolded entropic chains and the
folded domains. We know the behavior of the former from
Eq. �2�, and we can approximate the latter as a rigid and
inextensible object of an unknown size. We will find its size
from the peak-to-peak distance of the saw-tooth patterns. In
fact, the distance between two consecutive peaks in sawtooth
patterns is equal to the length of an unfolded domain minus
its end-to-end distance when it is folded. The equation

x =
anN

1 + �fc/f�� + �nIg − n�Rd + x0 �3�

gives us the extension after the nth unfolding event. Here N
is the number of residues in a single domain, and nIg is the
number of Ig repeats in the experiment. The parameter Rd
shows the distance between the first residues of two consecu-
tive folded domains which is equal to the end-to-end distance
of a folded Ig domain plus the length of one peptide unit.
The last parameter x0 is the offset from zero in experiments.

The first term in Eq. �3� is the extension of unfolded do-
mains and the second term is the contribution of folded do-
mains to the contour length. It should be mentioned that we
have assumed that the folded domains are rigid objects
which only increase the length of the chain and do not con-
tribute to the entropy and the force; therefore, we expect that
the simulations fit better to the last events, when most of the
domains are unfolded.

We know N and we have found a and fc by simulation;
therefore, only Rd remains unknown and can be used as a
fitting parameter to set the peak-to-peak distance. We will
have a good fit if we choose Rd equal to 5.4 nm; therefore, it

FIG. 3. Results of simulations for N=25, 50, 100, and 200 pep-
tides. All the curves have been divided by N. The curves collapse
perfectly. The solid line shows Eq. �2� and the related parameters
are in Table III.

FIG. 4. Reduced extension versus force.

FIG. 5. We fitted the simulation �lines� to the experiment
�circles� of �1� by following the concepts of Eq. �3�. Related fitting
parameters are in Table III.
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gives us the end-to-end distance of a single folded domain
that is approximately 5.0 nm. This value roughly agrees with
the 4.3 size taken by NMR �7�. This small discrepancy �0.7
nm, almost twice of a peptide unit� might be due to the
structure deformation of domains under tension.

Figure 5 displays the results of simulations and their com-
parisons to experimental values. The experimental data have
been taken directly from the graph of Ref. �1�. The param-
eters are displayed in Table III.

IV. CONCLUSION

We used a model that has only one free parameter: the
number of residues. By using this model, we can fit the result
of the simulation to a single unfolding event accurately. This
shows that the primary structure of the protein is not impor-
tant in the entropic regime, within the experimental preci-
sion.

Our results suggest that this model is accurate enough to
study the protein backbones in the entropic regime. Simpler
models will need to introduce fitting parameters to the model
to reproduce the experimental data.

Since our model performed well in describing the me-
chanical properties of protein backbones in the entropic re-
gime, one may go one step further and use it as a base for
studies like �25� in which our model can reduce the number
of effective interactions and present a clearer and more
straightforward picture. In addition, it is easy to consider also
the hydrogen bonds along the backbone, since it is sufficient
to include oxygen and hydrogen atoms of the backbone.
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TABLE III. Parameters of Eq. �3�, where a , fc, and � have been
calculated by simulation, and Rd has been calculated by fitting the
simulation results to that of sawtoothlike patterns.

a 0.3651±0.0004 nm

fc 13.0±0.1 pN

� 1.072±0.004

Rd 5.4±0.3 nm
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